Gadolinium Toxicity

Home » News » Gadolinium Bioeffects and Toxicity – Special Issue of MRI Journal

Gadolinium Bioeffects and Toxicity – Special Issue of MRI Journal

Breaking News


July 21, 2017 – European Medical Authority takes action on Linear Contrast Agents.  Read all about it.

March 10, 2017 – European group recommends to stop using 4 linear GBCAs Read all about it.

February 27, 2017 – New Study Reports Gadolinium Retention in 70 Cases with Normal Kidney Function. Read all about it.

Enter your email address to follow this blog and receive notifications of new posts by email.

Viewpoint Categories

Monthly Archives

A special issue of the journal Magnetic Resonance Imaging has been published and it is dedicated to “Gadolinium Bioeffects and Toxicity”.  The issue starts with a safety overview of GBCAs by MRI Safety expert Dr. Emanuel Kanal, and ends with articles by UNC Radiologist Dr. Richard Semelka.  One of the articles provides the initial description of Gadolinium Deposition Disease (GDD) which, while recently named, has been around for a while.

The issue is broken down into 4 sections as shown below.  The link will take you to the abstract, but you can access a PDF of the complete paper.

Introduction –
Kanal, E. (2016). Gadolinium based contrast agents (GBCA): Safety overview after 3 decades of clinical experience. Magnetic Resonance Imaging.

MRI Findings –
Kanda, T., et al (2016). Gadolinium deposition in the brain. Magnetic Resonance Imaging, 34(10), 1346–1350.

Radbruch, A. (2016). Are some agents less likely to deposit gadolinium in the brain? Magnetic Resonance Imaging, 34(10), 1351–1354.

Ramalho, J., et al, (2016). Technical aspects of MRI signal change quantification after gadolinium-based contrast agents’ administration. Magnetic Resonance Imaging, 34(10), 1355–1358.

Basic Sciences –
Murata, N., et al, (2016). Gadolinium tissue deposition in brain and bone. Magnetic Resonance Imaging, 34(10), 1359–1365.

Prybylski, J. P., et al, 2016). Gadolinium deposition in the brain: Lessons learned from other metals known to cross the blood–brain barrier. Magnetic Resonance Imaging, 34(10), 1366–1372.

Swaminathan, S., et al, (2016). Gadolinium toxicity: Iron and ferroportin as central targets. Magnetic Resonance Imaging, 34(10), 1373–1376.

Tweedle, M. F., et al, (2016). Gadolinium deposition: Is it chelated or dissociated gadolinium? How can we tell? Magnetic Resonance Imaging, 34(10), 1377–1382.

Future Directions –
Semelka, R. C., et al, (2016). Gadolinium deposition disease: Initial description of a disease that has been around for a while. Magnetic Resonance Imaging, 34(10), 1383–1390.

Prybylski, J. P., et al, (2016). Can gadolinium be re-chelated in vivo? Considerations from decorporation therapy. Magnetic Resonance Imaging, 34(10), 1391–1393.

Ramalho, J., et al, (2016). Gadolinium toxicity and treatment. Magnetic Resonance Imaging, 34(10), 1394–1398.

Semelka, R. C., et al, (2016). Summary of special issue on gadolinium bioeffects and toxicity with a look to the future. Magnetic Resonance Imaging, 34(10), 1399–1401.

My thoughts –
I believe this Special Issue is an important step in moving the discussion about gadolinium retention in patients with normal renal function forward.  It seems that everyone now agrees that all patients exposed to gadolinium-based contrast agents retain some gadolinium from each dose of contrast that they receive. However, regardless of what you call it, patients are suffering from the toxic effects of retained gadolinium.

There is no doubt in my mind or the minds of other affected patients that retained gadolinium can cause chronic clinical symptoms of varying severity. Hopefully a large population of affected patients will be interviewed and examined soon.  I believe that discussing symptoms with patients might trigger a thought process that leads researchers to uncover the missing pieces of the puzzle that explain the difference between what has been seen in brain tissue that contains gadolinium and the symptoms that patients are experiencing.

Sharon Williams


  1. Pat L Davis says:

    My son is suffering, severely, with the after effects of this. He went from a robust, athletic young man to a man whose life is now defined by the pain from the gadolinium/ metal in every tissue, every organ, every joint! He is self employed, so the pain severely limits his ability to nakeca living for his family. Plus the CHRONIC pain he has to endure and the extensive amount of money he has been out for medical costs, surgeries, medications! Tjis is a young man that had NEVER been unhealthy previously! It is SO disheartening!


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: